|
|
$$\begin{eqnarray} P_1 = \left(\begin{array}{c} P_1x \\ P_1y \end{array}\right) = \left(\begin{array}{c} 1 \\ 1.41 \end{array}\right) \\ P_2 = \left(\begin{array}{c} P_2x \\ P_2y \end{array}\right) = \left(\begin{array}{c} 2 \\ 1.60 \end{array}\right) \\ P_3 = \left(\begin{array}{c} P_3x \\ P_3y \end{array}\right) = \left(\begin{array}{c} 3 \\ 2.05 \end{array}\right) \\ P_4 = \left(\begin{array}{c} P_4x \\ P_4y \end{array}\right) = \left(\begin{array}{c} 4 \\ 2.22 \end{array}\right) \end{eqnarray} $$ |
$f(x) = mx + b$ | (1) |
$r_1 = f(P_{1x}) - P_{1y} = mP_{1x} + b - P_{1y}$ | (2.1) |
$r_2 = f(P_{2x}) - P_{2y} = mP_{2x} + b - P_{2y}$ | (2.2) |
$r_3 = f(P_{3x}) - P_{3y} = mP_{3x} + b - P_{3y}$ | (2.3) |
$r_4 = f(P_{4x}) - P_{4y} = mP_{4x} + b - P_{4y}$ | (2.4) |
$$F(m,b) = r_1^2 + r_2^2 + r_3^2 + r_4^2$$ | (3) |
$$F(m,b) = \left(mP_{1x} + b - P_{1y}\right)^2 + \left(mP_{2x} + b - P_{2y}\right)^2 + \left(mP_{3x} + b - P_{3y}\right)^2 + \left(mP_{4x} + b - P_{4y}\right)^2$$ | (3.1) |
$\frac{dF(m_{min},b_{min})}{dm} \stackrel{!}{=} 0 $ | (4.1 m) |
$\frac{dF(m_{min},b_{min})}{db} \stackrel{!}{=} 0$ | (4.1 b) |
$\frac{dF(m,b)}{dm} = 2\left(mP_{1x} + b - P_{1y}\right)P_{1x} + 2\left(mP_{2x} + b - P_{2y}\right)P_{2x}+2\left(mP_{3x} + b - P_{3y}\right)P_{3x}+ 2\left(mP_{4x} + b - P_{4y}\right)P_{4x} $ | (5.1 m) |
$\frac{dF(m,b)}{db} = 2\left(mP_{1x} + b - P_{1y}\right)+ 2\left(mP_{2x} + b - P_{2y}\right)+2\left(mP_{3x} + b - P_{3y}\right)+ 2\left(mP_{4x} + b - P_{4y}\right)$ | (5.1 b) |
$\frac{dF(m,b)}{dm} = \left(2P_{1x}^2 + 2P_{2x}^2 + 2P_{3x}^2 + 2P_{4x}^2\right)m + \left(2P_{1x}+ 2P_{2x} + 2P_{3x} + 2P_{4x}\right)b + \left(-2P_{1y}P_{1x} - 2P_{2y}P_{2x} -2P_{3y}P_{3x} -2P_{4y}P_{4x}\right) $ | (5.2 m) |
$\frac{dF(m,b)}{db} = \left(2P_{1x} + 2P_{2x} + 2P_{3x} + 2P_{4x}\right)m + \left(2+2+2+2\right)b + \left(-2P_{1y}-2P_{2y}-2P_{3y}-2P_{4y}\right) $ | (5.2 b) |
$\frac{dF(m,b)}{dm} = \left(2\sum_{i=1}^4P_{ix}^2\right)m + \left(2\sum_{i=1}^4P_{ix}\right)b + \left(-2\sum_{i=0}^4\left(P_{ix}P_{iy}\right)\right) $ | (5.3 m) |
$\frac{dF(m,b)}{db} = \left(2\sum_{i=1}^4P_{ix}\right)m + \left(4\cdot2\right)b + \left(-2\sum_{i=1}^4P_{iy}\right)$ | (5.3 b) |
$0 = \left(2\sum_{i=1}^4P_{ix}^2\right)m_{min} + \left(2\sum_{i=1}^4P_{ix}\right)b_{min} + \left(-2\sum_{i=0}^4\left(P_{ix}P_{iy}\right)\right) $ | (5.4 m) |
$0 = \left(2\sum_{i=1}^4P_{ix}\right)m_{min} + \left(4\cdot2\right)b_{min} + \left(-2\sum_{i=1}^4P_{iy}\right)$ | (5.4 b) |
$m_{min} = \frac{-\left(2\sum_{i=1}^4P_{ix}\right)b_{min} - \left(-2\sum_{i=0}^4\left(P_{ix}P_{iy}\right)\right)}{\left(2\sum_{i=1}^4P_{ix}^2\right)}$ | (5.5 m) |
$b_{min} = \frac{-\left(2\sum_{i=1}^4P_{ix}\right)m_{min} - \left(-2\sum_{i=1}^4P_{iy}\right)}{ \left(4\cdot2\right)}$ | (5.5 b) |
$m_{min} = \frac{-\left(2\sum_{i=1}^4P_{ix}\right)\frac{-\left(2\sum_{i=1}^4P_{ix}\right)m_{min} - \left(-2\sum_{i=1}^4P_{iy}\right)}{ \left(4\cdot2\right)} - \left(-2\sum_{i=0}^4\left(P_{ix}P_{iy}\right)\right)}{\left(2\sum_{i=1}^4P_{ix}^2\right)}$ | (5.6 m) |
$\left(2\sum_{i=1}^4P_{ix}^2\right)m_{min} = -\left(2\sum_{i=1}^4P_{ix}\right)\frac{-\left(2\sum_{i=1}^4P_{ix}\right)m_{min} - \left(-2\sum_{i=1}^4P_{iy}\right)}{ \left(4\cdot2\right)} - \left(-2\sum_{i=0}^4\left(P_{ix}P_{iy}\right)\right)$ | (5.7 m) |
$\left(2\sum_{i=1}^4P_{ix}^2\right)m_{min} = -\frac{\left(2\sum_{i=1}^4P_{ix}\right)^2m_{min} +\left(2\sum_{i=1}^4P_{ix}\right)\left(-2\sum_{i=1}^4P_{iy}\right)}{ \left(4\cdot2\right)} + \left(2\sum_{i=0}^4\left(P_{ix}P_{iy}\right)\right)$ | (5.8 m) |
$\left(2\sum_{i=1}^4P_{ix}^2\right)m_{min} = \frac{\left(2\sum_{i=1}^4P_{ix}\right)^2}{8}m_{min} + \frac{-4\left(\sum_{i=1}^4P_{ix}\right)\left(\sum_{i=1}^4P_{iy}\right)}{8} + \left(2\sum_{i=0}^4\left(P_{ix}P_{iy}\right)\right)$ | (5.9 m) |
$\left(2\sum_{i=1}^4P_{ix}^2 - \frac{\left(2\sum_{i=1}^4P_{ix}\right)^2}{8} \right)m_{min} = \frac{-4\left(\sum_{i=1}^4P_{ix}\right)\left(\sum_{i=1}^4P_{iy}\right)}{8} + \left(2\sum_{i=0}^4\left(P_{ix}P_{iy}\right)\right)$ | (5.10 m) |
$m_{min} = \frac{ \frac{-4\left(\sum_{i=1}^4P_{ix}\right)\left(\sum_{i=1}^4P_{iy}\right)}{8} + \left(2\sum_{i=0}^4\left(P_{ix}P_{iy}\right)\right)}{\left(2\sum_{i=1}^4P_{ix}^2 - \frac{\left(2\sum_{i=1}^4P_{ix}\right)^2}{8} \right)}$ | (5.11 m) |
Als kleine Nebenrechnung die Summen mit den o.a. Punktkoordinaten: $\sum_{i=1}^4P_{ix} = P_{1x}+ P_{2x} + P_{3x} + P_{4x} = 1 + 2 + 3 + 4 = 10$ $\sum_{i=1}^4P_{iy} = P_{1y}+ P_{2y} + P_{3y} + P_{4y} = 1.41 + 1.60 + 2.05 + 2.22 = 7.28$ $\sum_{i=1}^4P_{ix}^2 = P_{1x}^2 + P_{2x}^2 + P_{3x}^2 + P_{4x}^2 = 1^2 + 2^2 +3^2 + 4^2 = 1 + 4+ 9 +16 =30$ $\sum_{i=1}^4\left(P_{ix}P_{iy}\right) = P_{1y}P_{1x} + P_{2y}P_{2x} + P_{3y}P_{3x} + P_{4y}P_{4x} = 1\cdot1.41 + 2\cdot1.60 + 3\cdot2.05 +4\cdot2.22 = 1.41 + 3.20 + 6.15 + 8.88 = 19.64$ |
$m_{min} = \frac{ \frac{-4\left(10\right)\left(7.28\right)}{8} + \left(2\cdot19.64\right)}{\left(2\cdot30 - \frac{\left(2\cdot10\right)^2}{8} \right)} = \frac{-5\cdot7.28 + 39.28}{60-50} = \frac{2.88}{10} = 0.288$ | (5.12 m) |
$b_{min} = \frac{-\left(2\cdot10\right)\cdot0.288 - \left(-2\cdot7,28\right)}{ \left(4\cdot2\right)} = \frac{8.8}{8} = 1.1$ | (5.6 b) |
$f(x) = mx+b = 0.288\cdot x + 1.1$ | (6) |